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Abstract
Spatial distribution of precipitation in mountainous areas suggests strong control of surface orography on precipitation pro-
cesses. Generally, quantifying orographic control of precipitation and identifying homogeneous areas are difficult because 
of the complex combination of factors, which could influence the precipitation process. The objective of this study was to 
account for morphometric attributes (elevations and distances to the nearest coastline) in geostatistical mapping of average 
annual precipitation in southern Italy. The study area was the Calabria Region, which has a spatially variable Mediterranean 
climate because of its high orographic variability. In this study, annual precipitation data collected by the former Italian 
Hydrographic Service for the 1916–2006 period were used. Elevations and distances to the nearest coastline were derived 
from a digital elevation model with 250 m × 250 m cell size in a geographic information system environment and used to 
delineate areas with homogeneous morphological features [landscape units (LU)]. The effectiveness of LU was assessed 
estimating the expected value of the average annual precipitation with polygon kriging and comparing their differences 
with the Mann–Whitney–Wilcoxon test. The average annual precipitation map showed that mountains areas receive more 
precipitation than low elevation areas and, in the Tyrrhenian side, it was also evident the orographic influence of Coastal 
chain on precipitation with high precipitation values. Results can help in understanding the differences among LU and the 
influence of surface orography on spatial patterns of annual precipitation in mountainous regions.
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Introduction

Precipitation is a process highly variable in space and 
time (Bárdossy and Li 2008), which often is measured 
at fixed and sparse point locations (rain gauges), even 
though the quantity of greatest interest is a mean value 
over specified areas such as an hydrological catchment 
or a grid cell of various climatic, hydrologic and ecologi-
cal models (Grimes and Pardo-Igúzquiza 2010; Hengl 
et al. 2013). Different methods have been developed for 
characterising and modelling precipitation (Goovaerts 
2000; Szentimrey et al. 2010; Lloyd 2010; Grimes and 
Pardo-Igúzquiza 2010). Most of such methods give simi-
lar results in areas with low relief, even distribution of 

rain gauges and abundant data. Unfortunately, such condi-
tions are rarely met, and when data are sparse, especially 
in mountainous areas, the implicit or explicit underlying 
assumptions about the variation among measured points 
may differ significantly even at relatively reduced scales 
(Collins and Bolstad 1996; Diodato 2005). In these cases, 
the choice of an interpolation approach is a key issue 
because it needs taking into account how orography influ-
ences precipitation. Particularly, caution is required in 
using information from precipitation atlases relying only 
on statistical relationships because they may not be gen-
erally applicable (Roe 2005). Methods producing smooth 
surfaces include various approaches, which may combine 
regression analysis and distance-based weighted averages 
(Hartkamp et al. 1999; Brunsdon et al. 2001; Kumari et al. 
2017; Lucà et al. 2018). The key difference among such 
approaches is the criteria used to determine the weights 
of point data in relation to distance. These criteria can 
include simple distance relations as in the inverse distance 
weighting methods (Gotway et al. 1996), minimization of 
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variance as in the different types of kriging algorithms 
(Chilès and Delfiner 2012), minimization of curvature and 
enforcement of smoothness criteria as in splining (Dubrule 
1984; Hutchinson 1995).

Geostatistics is a suitable solution for describing and 
quantifying the spatial variability of precipitation because it 
is often measured at fixed point locations and varies more or 
less continuously in the geographical space (Matheron 1971; 
Grimes and Pardo-Igúzquiza 2010). Geostatistics also pro-
vides a measure of reliability of the estimated precipitation 
and takes into account the support size (area of measurement 
unit), because precipitation is recorded by rain gauge punc-
tually, whereas its estimation is provided for larger extent 
(Dowd and Pardo-Igúzquiza 2012; Lucà et al. 2018).

Topographic attributes may improve the estimation of 
precipitation if used as auxiliary variables in multivariate 
geostatistics or they may allow to understand factors control-
ling the distribution of precipitation. Such factors, as known, 
can be ascribed to converging–ascending air flow, air tem-
perature, winds, distance to the coast, and mountain ranges 
(Hayward and Clarke 1996; Strangeways 2007; Makarieva 
et al. 2009).

In areas as Calabria region (southern Italy), with variable 
morphology, high mountains and plain areas or valleys, the 
precipitation–elevation relationship is well documented. Par-
ticularly, using geostatistical methods, it has been showed, 
worldwide, how elevation strongly controls the variability 
of precipitation at fine scale of monthly, annual, or interan-
nual precipitations (Chua and Bras 1982; Hevesi et al. 1992; 
Martínez-cob 1995; Pardo-Igúzquiza 1998; Goovaerts 2000; 
Deraisme et al. 2001; Gómez-Hernández et al. 2001; Dio-
dato 2005; Lloyd 2005; Mirás-Avalos et al. 2007; Feki et al. 
2012; Bárdossy and Pegram 2013; Ding et al. 2014; Zeng 
et al. 2016; Yao et al. 2016).

However, in mountainous regions, it may not be possi-
ble to capture the relationship between precipitation and 
topographic attributes because it depends on spatial scale. 
Moreover, beyond a specific spatial scale, there is not a 
simple relationship when topography and precipitation are 
smoothed (Haiden and Pistotnik 2009).

In addition, the relationship precipitation–elevation 
depends on the temporal aggregation (i.e., the sum of pre-
cipitation in a considered interval time) (Bárdossy and 
Pegram 2013). Particularly, the influence of elevation on 
precipitation has been demonstrated important at monthly 
to annual scales (Hevesi et al. 1992; Martínez-cob 1995; 
Pardo-Igúzquiza 1998; Goovaerts 2000; Deraisme et al. 
2001; Gómez-Hernández et al. 2001; Diodato 2005; Lloyd 
2005; Bárdossy and Pegram 2013) and that such a rela-
tion increases with the time of aggregation (Bárdossy and 
Pegram 2013).

Precipitation depends also on distance from the sea (Hay-
ward and Clarke 1996; Agnew and Palutikof 2000) which 
could be used to account for maritime/landmass influences.

Finally, the relationships precipitation–topographic attrib-
utes are spatially complex and understanding their nature 
and spatial pattern is not easy and simple. Topographic 
attributes have been used as environmental covariates to 
produce more accurate maps with different geostatistical 
methods (Chua and Bras 1982; Hevesi et al. 1992; Mar-
tínez-cob 1995; Pardo-Igúzquiza 1998; Prudhomme and 
Reed 1999; Goovaerts 2000; Gómez-Hernández et al. 2001; 
Diodato 2005; Lloyd 2005; Mirás-Avalos et al. 2007; Feki 
et al. 2012; Bárdossy and Pegram 2013; Kumari et al. 2017).

However, topographic attributes and precipitation data are 
associated with different support sizes, which can be con-
sidered pointwise (very small surface unit) for precipitation 
compared to the support size of the topographic attributes 
(large surface unit). Generally, different types of data are 
reported in a way as to not reflect the original support sizes 
with significant effect on geostatistical analysis. To combine 
such different spatial data, it is necessary defining methods 
to take into account the underlying uncertainties and change 
of support (Gotway and Young 2002).

An alternative approach of using topographic attributes as 
covariates to explore the complex nature of such a relation, 
which does not require taking into account the change of 
support, might be to incorporate the influence of topogra-
phy on precipitation patterns delineating areas with homo-
geneous morphological features. Such areas could be called 
landscape units (LU) and delineated using morphometric 
attributes easily derivable from a digital elevation model 
(DEM) in a geographic information system (GIS) environ-
ment as elevation above sea level and distance to the nearest 
coastline.

Estimating the mean value of precipitation over the dif-
ferent landscape units (having irregular shapes) using data 
values from n rain gauges with arbitrary location can be 
solved by polygon kriging (Buttafuoco et al. 2017). It can be 
used to estimate the expected value and standard deviation 
of precipitation for each landscape unit by taking spatial 
correlation into account. Moreover, the effectiveness of land-
scape units’ delineation based on elevation and distance to 
the nearest coastline has been evaluated by polygon kriging.

Studying the relationships between precipitation and 
topographic attributes is a central part of the interaction 
between the land surface and the atmosphere and it is impor-
tant for natural ecosystems, water resources management, 
and for its connections to other physical components of the 
Earth system (Roe 2005). The study would contribute to 
understanding how topographic attributes influence annual 
precipitation in a Mediterranean environment.

The objective of this paper was to account for mor-
phometric attributes, such as elevation and distance to the 
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nearest coastline, in geostatistical mapping of average annual 
precipitation in a region of southern Italy (Calabria). To 
accomplish this objective: (1) it was proposed an approach 
for delineating contiguous landscape units based on eleva-
tion and distance to the nearest coastline and (2) the land-
scape units were validated by comparing statistically the 
expected values of precipitation estimated by polygon krig-
ing for each landscape unit.

Materials and methods

Study area and precipitation data

The Calabria Region (Italy) has an area of 15,080 km2 and it 
is one of the most mountainous Italian regions (Fig. 1), even 
though it does not have many high summits. The elevation 
has an average value of 597 m above sea level (a.s.l.) and 
a maximum of 2266 m a.s.l. (Fig. 1b). Calabria Region has 
an elevation greater than 500 m a.s.l. for 42% of the land, 
between 50 and 500 m a.s.l. for 49%, and for only 9%, its 
elevation is lower than 50 m a.s.l. The study area has high 

climatic contrasts because of its geographic position and 
mountainous nature.

The climate is Mediterranean and highly spatially varia-
ble with precipitation less frequent in summer. Coastal zones 
are characterised by mild winters (average air temperature: 
about 10 °C) and hot summers (average air temperature: 
about 23 °C) with little precipitation (average precipitation: 
about 23 mm). The climate in the Ionian side of the study 
area (Fig. 1) is influenced by currents coming from Africa 
with high temperatures and short and heavy precipitation, 
while western air currents influence the Tyrrhenian side 
(Fig. 1) determining lower temperatures and orographic 
influence on precipitation. In the inland zones, winters 
are colder than in the coastal zones, whereas summers are 
fresher with some precipitation (Federico et al. 2000; Caloi-
ero et al. 2015; Buttafuoco et al. 2015).

A long-term database (1916–2006) of the annual precipi-
tation collected by the former Italian Hydrographic Service 
has been used. After data homogenization, 129 precipita-
tion gauges (Fig. 1b) have been selected. More details on 
precipitation data are reported in Buttafuoco et al. (2015).

Fig. 1  Location (a) and digital elevation model (b) of the study area. Precipitation gauge locations are also reported (filled points) (b)
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Landscape units

The study area was split in subareas (landscape units) with 
homogeneous morphological features. The delineation of 
such landscape units was based on elevation above sea level 
and the distance to the nearest coastline derived from a digi-
tal elevation model (DEM) with 250 m × 250 m cell size in 
a GIS environment. As starting point, to combine elevation 
and distance to the nearest coastline in classes and to opti-
mize the number of landscape units, both morphological 
features were divided into three classes:

• Elevation (E):

1. 0 m < E ≤ 500 m
2. 500 m < E ≤ 1000 m
3. E > 1000 m

• Distance (D) to the nearest coastline:

1. 0 km < D ≤ 5 km
2. 5 km < D ≤ 10 km
3. D > 10 km

By definition, the landscape units may not be contiguous 
and consequently, the same landscape unit can be found at 
different locations.

Geostatistical approach

The average annual precipitation data were modelled as 
an intrinsic stationary process using the methods of geo-
statistics (Matheron 1971) in which each average annual 
precipitation value z(�

�
) at different location xα(x denotes 

the coordinates in two dimensions and α = 1,…, N are the 
sampling points) is interpreted as a particular realization of 
a random variable Z(�

�
) . The set of such random variables 

Z(�1) , Z(�2) , …, constitutes a random function (Journel and 
Huijbregts 1978; Goovaerts 1997; Webster and Oliver 2007; 
Chilès and Delfiner 2012). The set of actual values of Z 
(precipitation data) including the realization of the random 
function is known as a regionalized variable z(�

�
) . However, 

a random function has not a mathematical description as a 
deterministic one (i.e., an equation), but it may have a cor-
relation (structure) in space with values at different places 
related to one another in a statistical sense (Webster and 
Oliver 2007). Such a structure in space is estimated by the 
experimental variogram �(�) from sample data. The vari-
ogram is a measure of variability and is a function of the dis-
tance (h) and direction of data pair values [z(�

�
), z(�

�
+ �)] 

(Chilès and Delfiner 2012). A theoretical function, called 
variogram model, is fitted to the experimental variogram 
and allows the analytical estimate of the variogram for any 

distance h. Sill, range, and nugget summarize the main 
features of the modelled variogram (Goovaerts 1997). The 
range is the distance over which pairs of precipitation values 
are spatially correlated, while the sill is the variogram value 
corresponding to the range (Webster and Oliver 2007). The 
nugget effect is a discontinuity at variogram origin, which 
characterises the very short-scale variability within the 
shortest sampling interval and the errors of measurement 
(Goovaerts 1997). Alternative modelled variograms were 
compared by cross-validation, which consists in removing 
temporarily in turn each sample value and estimate it using 
the modelled variogram and its neighbouring data. The 
goodness of fit was assessed by the mean error (ME) and the 
mean squared deviation ratio (MSDR). A mean error (ME) 
close to 0 proves the unbiasedness of estimate, whereas a 
model is accurate if MSDR is close to 1 (Webster and Oliver 
2007).

Even though the geostatistical approach does not require 
the data follow a normal distribution, variogram modelling 
is sensitive to strong departures from normality because a 
few exceptionally large values may contribute to many very 
large squared differences. A data transformation is suggested 
when skewness is greater than 0.5 (Webster and Oliver 
2007) and Gaussian anamorphosis is a suitable procedure 
to transform skew data into a Gaussian-shaped variable with 
zero mean and unit variance (Wackernagel 2003; Chilès and 
Delfiner 2012).

The fitted variogram was used with Polygon kriging (But-
tafuoco et al. 2017) and all data to estimate an average value 
of precipitation and its associated variance of estimation 
over each of the irregular-shaped landscape units. Polygon 
kriging is used when the estimation has to be made over 
polygon of irregular shape and different size and it is an 
almost straightforward extension of block kriging (Webster 
and Oliver 2007). Polygon kriging requires that each poly-
gon is firstly discretized in a number of regular cells i, then 
the average covariance function relative to each polygon ν, 
is calculated as a weighted discrete summation of the point 
covariance function:

where each wi relates to the proportion of the intersection 
area between the cell i, centred in the point ci and the poly-
gon v, Nc is the number of the cells i within the polygon ν, 
α is a data point, K

� ci
 is the covariance function calculated 

at each point ci and K
��

 is the average point-area covariance 
relative to the polygon ν.

Finally, the differences in precipitations among differ-
ent landscape units were statistically compared using the 
Mann–Whitney–Wilcoxon test (Kanji 2006). It is a nonpara-
metric test to compare the means of two populations when 

(1)K
��

=
1

∑Nc

i=1
wi

Nc
�

i=1

wiK� ci
,
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the two distributions have the same shape and spread. The 
test is based on independent random samples and does not 
require the normal distribution. However, the test has an 
important limitation in spatial analysis because of the spatial 
dependence of the precipitation values.

All geostatistical analyses were performed using the soft-
ware package ISATIS, release 2018.2 (Bleines et al. 2018).

Results and discussion

Combining the different classes of elevation and distance 
to the coastline, the study area was split into 107 polygons, 
which were classified in 8 types of landscape units (Fig. 2 
and Table 1). The polygons belonging to the landscape units 
3 and 4 (Fig. 2) are mostly contiguous, whereas the other 
landscape units include polygons at different degrees of con-
tinuity (Fig. 2). 

The landscape unit 3 includes coastal areas between 0 
and 5 km from the coastline and an elevation between 0 and 

500 m a.s.l. (Fig. 2), whereas landscape unit 4 differs from 
unit 3 only for the distance to the coastline (5–10 km from) 
and includes hilly areas. The different degree of continuity 
of the other landscape units reflects the orography of the 
study area (Fig. 2).

The distribution of average annual precipitation is slightly 
positive skewed (Fig. 3a) because mean (1062.6 mm) and 
median (1015.4 mm) do not coincide, and median is closer 
to lower quartile (785 mm). In addition, the upper whisker 
(maximum precipitation value = 2143 mm) is longer than the 
lower whisker (minimum precipitation value = 502.7 mm). 
The skewness coefficient is 0.70 and, for the subsequent 
analysis, precipitation data were transformed into a Gauss-
ian-shaped variable using the above-mentioned Gaussian 
anamorphosis.

A map of the 2D variograms (not shown) of precipita-
tion data was computed to explore the precipitation data 
for modelling and interpreting spatial dependence in all 

Fig. 2  Landscape units obtained combining the different classes of 
elevation and distance to the coastline

Table 1  Results of combination of the classes of elevation and dis-
tances to the nearest coastland

Landscape 
unit

Number of 
polygons

Elevation (E, m) Distance (D, km)

1 26 0 < E ≤ 500 D > 10
2 8 500 < E ≤ 1000 D > 10
3 1 0 < E ≤ 500 0 < D ≤ 5
4 16 0 < E ≤ 500 5 < D ≤ 10
5 14 500 < E ≤ 1000 5 < D ≤ 10
6 9 500 < E ≤ 1000 0 < D ≤ 5
8 6 E > 1000 5 < D ≤ 10
9 27 E > 1000 D > 10

Fig. 3  Box plot of the annual precipitation data (a) and variogram of 
the Gaussian precipitation data (b). The filled points are the experi-
mental semivariance values, whereas the solid line is the model of 
variogram. The dashed line is the experimental variance
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the directions of the space and to identify possible aniso-
tropic behaviours of precipitation. A bounded isotropic 
nested variogram model was fitted to the experimental 
variogram, because no relevant difference as a function 
of direction (anisotropy) was detected (Fig. 3b). The vari-
ogram combines three basic structures including a nug-
get effect and two spherical models (Webster and Oliver 
2007) with ranges 42,210 m and 76,072 m. The results of 
cross-validation were quite satisfactory because the mean 
of the estimation error was close to zero (0.0116) and the 
variance of the mean squared deviation ratio was close 
to 1 (0.96). The presence of differences in spatial pat-
tern of variation could be interpreted as changes in local 
weather situation and in the large-scale organization of 
storms and climate patterns. The shorter range of spatial 
variation (42,210 m) could be related to the orographic 
effect (Fig. 1b), whereas the longer range of variation 
(76,072 m) could be related to large-scale factors of vari-
ation as global atmospheric circulation. Such a hypothesis 
about the longer range of variation might be confirmed 
by the proportion of precipitation and wet day variance 
for all seasons explained by the Western European Zonal 
Circulation Index and by the Mediterranean Circulation 
Index (Brunetti et al. 2002).

The fitted variogram and the Gaussian annual precipita-
tion data were used with polygon kriging to estimate the 
expected value (average) of annual precipitation and its 
associated variance of estimation over each landscape unit. 
The Gaussian estimates were back-transformed to the raw 
values of the variables through the anamorphosis functions 
previously calculated. The spatial distribution of average 
annual precipitation over Calabria Region (Fig. 4) shows 
that generally mountains areas receive more precipitation 
than low elevation areas. In the Tyrrhenian side, it is also 
evident the orographic influence of Coastal chain on pre-
cipitation with high precipitation values (Fig. 4).

The values of expected precipitation for each landscape 
unit (LU) are summarized in Fig. 5. Such values were 
compared with the Mann–Whitney–Wilcoxon test and the 
results are reported in Table 2. Two expected precipita-
tions are statistically different when the calculated values 
of the test (Table 2) are smaller than the one tabulated. In 
the study case, the tabulated value is 0.05: the expected 
precipitation value of landscape unit (LU) 4 is statistically 
different from the ones of LU1 and LU2. The expected 
precipitation values of LU5 and LU6 are different from the 
one of LU2, whereas both the expected values of LU7 and 
LU8 are different from the ones of LU4 and LU6.

Though the Mann–Whitney–Wilcoxon test has some 
limitations because of the spatial dependence of precipi-
tation, its results can help to understand the differences 
among the landscape units and the influence of surface 
orography on patterns of annual precipitation.

Since it is well known that it may not be possible or, 
however, easy to capture the relationship between pre-
cipitation and topographic attributes because it depends 
on spatial scale and the temporal aggregation (Bárdossy 

Fig. 4  Polygon kriging map of the expected values of annual precipi-
tation

Fig. 5  Box plots summarizing the polygon kriging annual precipita-
tions for each landscape unit (LU)
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and Pegram 2013), the results suggest the need for further 
analyses at different spatial scales and temporal aggrega-
tions to draw meaningful conclusions.

Conclusions

The combination of the different classes of elevation and 
distance to the coastline has allowed to split the study area 
into 107 polygons, which have been classified into 8 types 
of landscape units. With the exception of landscape units 
3 and 4, the other ones have included polygons at different 
degrees of continuity.

The spatial variation of the average annual precipitation 
has been described and modelled by a bounded isotropic 
nested variogram model, which has combined three basic 
structures including a nugget effect and two spherical mod-
els at short and long range. The presence of differences in 
spatial pattern of variation has been interpreted as changes in 
local weather situations and in the large-scale organization 
of storms and climate patterns.

The map of the expected annual precipitation obtained 
using polygon kriging has shown that, generally, mountains 
areas receive more precipitation than low elevation areas. 
In the Tyrrhenian side, it was also evident the orographic 
influence of Coastal chain on precipitation with high pre-
cipitation values.

The Mann–Whitney–Wilcoxon test has allowed to com-
pare the expected precipitation values of the different land-
scape units. The expected values were not always statisti-
cally different, but such results might be due to the spatial 
dependence of precipitation. However, the results can con-
tribute in understanding the control of surface orography 
on patterns of annual precipitation and their differences in 
mountainous regions.

Understanding natural processes is often an iterative 
approach and then analysing the relationship between land-
scape features and precipitation data at different spatial 
scales and temporal aggregations could contribute to draw 

meaningful conclusions. The results could provide a step-
ping stone to further study and investigations.
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